Differential Equations
1. Linearly dependent functions. If \(f(x)=cg(x)\), where \(c\) is a constant, then they are linearly dependent.
2. If \(y_1(x),y_2(x)\) are solutions to \(P(x)y”+Q(x)y’+R(x)y=0\), then \(y(x)=y_1(x)+y_2(x)\) is also a solution.
3. Solve \(ay”+by’+cy’=0\)
First, solve the characteristic equation:
$$ar^2+br+c=0$$
$$\Delta = b^2-4ac$$
If \(\Delta>0\):
$$y(x)=c_1e^{r_1x}+c_2e^{r_2x}$$
If \(\Delta=0\), \(r=\frac{-b}{2a}\):
$$y(x)=c_1e^{rx}+c_2xe^{rx}$$
If \(\Delta<0\), \(r=\alpha \pm \beta i\)
$$y(x)=e^{\alpha x}(c_1\cos\beta x+c_2\sin\beta x)$$
4.
If the value of \(y(x_0)\) and \(y'(x_0)\) are given, the solution is unique. This is called the initial value problem.
If the function values at different \(x\), the solution might not exist, uniquely exist, or exist infinitely many. This is called the boundary value problem.
5. Solve \(ay”+by’+cy=G(x)\)
The general solution is: \(y(x)=y_p(x)+y_c(x)\)
\(y_c(x)\) is the general solution to the complementary equation \(ay”+by’+cy’=0\)
The particular solution \(y_p(x)\) depends the type of function \(G(x)\) is
Type 1: polynomial
Let \(y_p(x)\) be a polynomial with the same order as \(G(x)\) .
Type 2: \(G(x)=Ce^{kx}G(x)=Ce^{kx}\)
Let \(y_p(x)=Ae^{kx}\)
Type 3: \(G(x)=C\cos (kx)\) or \(C\sin (kx)\)
Let \(y_p(x)=A\cos (kx)+B\sin (kx)\)
Type 4: \(G(x)=G_1(x)+G_2(x)\)
\(y_p(x)=y_{p1}(x)+y_{p2}(x)\). \(y_{p1}(x)\) is the particular solution for \(ay”+by’+cy=G_1(x)\)
Type 5: \(G(x)=G_1(x)G_2(x)\)
Let \(y_p(x)\) be the product of the types of functions. For example, if \(G(x)=(2x+1)e^{3x}\) , let \(y_p(x)=(Ax+B)e^{3x}\). Note that \(y_p(x)\neq y_{p1}(x)y_{p2}(x)\).
If \(G(x)=P(x)\sin(kx)\) or \(P(x)\cos(kx)\), where \(P(x)\) is a polynomial, let \(y_p(x)=P_1(x)\cos (kx)+P_2(x)\sin(kx)\). For example, \(G(x)=(2x+1)\sin3x\). Let \(y_p(x)=(Ax+B)\cos3x+(Cx+D)\sin3x\)
Once the type of function is decided, plug \(y_p(x)\) in and solve for the coefficients.
If the particular solution has the same form as the complementary solution, multiply \(y_p(x)\) by \(x\).
For example, \(-y”+5y’-6y=e^{2x}\). \(y_c(x)=c_1e^{2x}+c_2e^{3x}\). If we follow the rules we should let y_p(x)=Ae^{2x}, but since there is \(e^{2x}\) in it, we should let \(y_p(x)=Axe^{2x}\)
7. Solve \(P(x)y”+Q(x)y’+R(x)y=0\), where \(P(x),Q(x),R(x)\) are polynomials.
Let
$$y=\sum^{\infty}_{n=0}C_nx^n$$
$$y’=\sum^{\infty}_{n=0}(n+1)C_{n+1}x^n$$
$$y”=\sum^{\infty}_{n=0}(n+2)(n+1)C_{n+2}x^n$$
8. Spring equations
Undamped spring:
$$mx”+kx=0$$
$$x(t)=A\cos(\omega t+\delta), \omega=\sqrt\frac k m$$
Damped spring:
$$mx”+cx’+kx=0$$
Driven Oscillation:
$$mx”+cx’+kx=F(t)$$
9. RLC circuit
$$LQ”+RQ+\frac 1 CQ=E(t)$$