Complex Numbers

1. Euler’s formula

$$e^{i\theta}=\cos \theta+i\sin\theta$$

$$e^{a+bi}=e^a(\cos b+i\sin b)$$

$$\cos \theta = \frac{e^{i\theta}+e^{-i\theta}}{2}$$

$$\sin \theta = \frac{e^{i\theta}-e^{-i\theta}}{2}$$

2. For a complex number \(z=a+bi=r(\cos\theta+i\sin \theta)\),

The modulus  \(|z|=r\)

The argument \(arg(z)=\theta\)

3. Complex conjugate. For a complex number \(z=a+bi\), its complex conjugate is \(\bar z=a-bi\)

4.

$$z_1z_2=r_1r_2(\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2))$$

$$1/z=1/r(\cos(\theta)-i\sin(\theta))$$

5. De Moivre’s Theorem

$$z^n=r^n(\cos(n\theta)+i\sin(n\theta))$$

6. The solution for \(x^n=z=r(\cos\theta+i\sin \theta)\) is

$$x=r^{\frac{1}{n}}(\cos(\frac{\theta+2k\pi}{n})+i\sin(\frac{\theta+2k\pi}{n})), k=0,1,2…$$

If \(n\) is a natural number, there are \(n\) different solutions for \(k=0,1…n-1\)

7. We can use Euler’s formula to derive some trig-transformations, for example:

$$\cos a\cos b=\frac{(e^{ia}+e^{-ia})(e^{ib}+e^{-ib})}{4}$$

$$=\frac{e^{i(a+b)}+e^{-i(a+b)}+e^{i(a-b)}+e^{-i(a-b)}}{4}$$

$$=\frac 1 2 (\cos(a+b)+\cos(a-b))$$